
* L00 rinciples and Standards for School Math-
ematics (NCTM 2000) emphasizes the
goal of computational fluency for all stu-

dents. It articulates expectations regarding flu-
ency with basic number combinations and the
importance of computational facility grounded in
understanding (see a summary of key messages
regarding computation in Principles and Stan-

dards in the sidebar on page 156). Building
on the Curriculum and Evaluation Stan-
dards for School Mathzematics (NCTM
1989) and benefiting from a decade of
research and practice, Principles and Stan-
dards articulates the need for students to

develop procedural competence within a school
mathematics program that emphasizes mathemat-
ical reasoning and problem solving. In fact,
learning about whole-number computation is a
key context for learning to reason about the base-
ten number system and the operations of addi-
tion, subtraction, multiplication, and division.
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Fluency, as used in Principles and Standards,
includes three ideas: efficiency, accuracy, and
flexibility.

* Efficiencv implies that the student does not get
bogged down in many steps or lose track of the
logic of the strategy. An efficient strategy is one
that the student can carry out easily, keeping
track of subproblems and making use of inter-
mediate results to solve the problem.

* Accluracy depends on several aspects of the
problem-solving process, among them, careful
recording, the knowledge of basic number com-
binations and other important number relation-
ships, and concern for double-checking results.

* Flexibility requires the knowledge of more than
one approach to solving a particular kind of
problem. Students need to be flexible to be able
to choose an appropriate strategy for the prob-
lem at hand and also to use one method to solve
a problem and another method to double-check
the results.

Fluency demands more of students than memo-
rizing a single procedure does. Fluency rests on a
well-built mathematical foundation with three
parts:

1. An understanding of the meaning of the oper-
ations and their relationships to each other-for
example, the inverse relationship between multipli-
cation and division

2. The knowledge of a large repertoire of num-
ber relationships, including the addition and multi-
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plication "facts," as well as other relationships,
such as how 4 x 5 is related to 4 x 50

3. A thorough understanding of the base-ten
number system, how numbers are structured in this
system, and how the place value system of num-
bers behaves in different operations-for example,
that 24 + 10 = 34 or that 24 x 10 = 240

The third element listed previously-flexibil-
ity-is a key indicator of students' command of
this mathematical foundation. For example, the fol-
lowing three problems appear to be quite similar:

673 - 484 673 - 473 673 -492

However, a fluent student or adult might solve each
of these problems differently. Suppose that my
basic way of solving most subtraction problems is
by adding up. I might solve the first problem by
thinking, "It's 16 from 484 to 500, a hundred from
500 to 600, then another 73; so 100 plus 16 plus 73
is 189."Any computationally fluent student or adult
should solve the second problem by simply noting
the relationship between the two numbers-that
they have a difference of 200 between them. Adding
up (or using any number of other subtraction algo-
rithms) is not necessary if the solver understands
the relationships of numbers in the base-ten system.
The third problem could be solved by the adding-up
method (as well as by other basic subtraction algo-
rithms), but a person who is used to looking at the
whole problem and drawing on knowledge about
number and operation might very well notice that
492 is quite close to 500. By adding 8 to each num-
ber in the problem, the difference is maintained and
the equivalent problem, 681 - 500, is easily solved.
In her study of Chinese and American teaching of
elementary mathematics, Ma (1999, p. 112) says
the following:

Being able to calculate in multiple ways means that one has
transcended the formality of the algorithm and reached the
essence of the numerical operations-the underlying math-
ematical ideas and principles. The reason that one problem
can be solved in multiple ways is that mathematics does not
consist of isolated rules, but connected ideas. Being able to
and tending to solve a problem in more than one way, there-
fore, reveals the ability and the predilection to make con-
nections between and among mathematical areas and topics.

Connectin1g

PF3roedures
Recently, during a visit to a third-grade classroom,
I watched Eleana adding 112 and 40. She had writ-
ten the numbers as shown, misaligning the
columns:

112
+40

512

She called me over because the answer did not
seem right to her, but she knew she had done the
steps correctly. I said, "What if the problem was
110 plus 40? Try to figure that out in your head."
She started at 110 and counted on by tens (120,
130, 140, 150). Then she knew that she needed to
add on the 2 and solved the problem easily.

In another third-grade class, David solved a
multiplication problem like this:

2

57
x4
288

He multiplied the 7 and 4, getting 28; put down the
8 and "carried" the 2; then added the 2 to the 5
before multiplying by 4, giving him an answer of
288. I said to him, "So, is there a problem you
know that's close to 57 x 4 that could help you with
this problem?" He shook his head. I said, "Do you
know what 50 x 4 would be?" "Um, sure-two 50s
would be 100, so it's 200." Then I asked him what
part of the problem he had left to solve. He said
that he needed to solve 7 x 4. He finished by
adding the two subproducts in his head. For David,
57 x 4 should have been an easy mental problem.

Eleana and David are students who have some
good ideas about number relationships and opera-
tions, but they have not learned to apply these ideas
sensibly in solving problems. They draw on par-
tially remembered techniques that they have been
taught, but they do not relate these procedures to
the meaning of the numbers or the properties of the
operations that they are carrying out.

Eleana's and David's work are typical examples
of students' using procedures without understand-
ing. Some might say that they simply need to learn
the rules better to succeed. However, simply cor-
recting these students' procedures does not get to
the heart of the problem. Learning about computa-
tion is not, for them, a context in which to make
sense of mathematics. They are not looking at the
whole problem and using what they know about
numbers and operations to reason about the answer.
These students are not developing a foundation for
computational fluency by learning and applying
knowledge about the structure of the base-ten sys-
tem and the properties of the operations.

David, when probed, does know something
about the properties of multiplication. With help,
he recognizes that 57 x 4 can be broken into two
subproblems, 50 x 4 and 7 x 4, and that adding the
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two products will give him the answer to the prob-
lem-an application of the distributive property.
However, he currently has not integrated these two
pieces of knowledge-the computational proce-
dure and an understanding of the properties of mul-
tiplication. He does not recognize that 288 (which
would be closer to 4 x 70 than to 4 x 50) is not a
sensible answer.

Dowker (1992) cites Hadamard (1945). who
writes about errors as follows: "Good mathemati-
cians, when they make them, which is not infre-
quent, soon perceive and correct them" (p. 49).
Dowker continues, "To the person without number
sense, arithmetic is a bewildering territory in which
any deviation from the known path may rapidly
lead to being totally lost" (p. 52). Our job as teach-
ers is to help students connect procedures, proper-
ties of operations, and understanding of place value
rather than have them learn these concepts as sep-
arate, compartmentalized pieces of knowledge.

Some of the traditional algorithms historically
taught in schools in the United States make it diffi-
cult for students to make these connections. Let us
look at 57 x 4 again. The traditional algorithm
splits up the first subproduct. 28, into 20 and 8,
leaving the 8 under the line and putting the 20
(which is written as a 2 so that it no longer looks
like 20) above the tens column. The algorithm sug-
gested by David's ultimate approach keeps the
result of each subproblem intact. The distributive
property is much more visible, as is the place value

of all the numbers involved in the problem:

57
x4
200
28

228

David's final approach to the problem is sound
mathematically, connects clearly with his under-
standing of the mathematical relationships in the
problem, and provides a good foundation for solv-
ing more complex problems. Teaching that enables
students to connect procedures, the place value of
numbers, and properties of operations is not simply
a matter of using more transparent procedures and
notation. Students must learn algorithms while they
are developing their understanding of place value
and of the operations, not separately. Extensive evi-
dence shows that for many students, this kind of
integrated learning of procedures and understand-
ing leads to the development of algorithms that are
different from those traditionally taught in the
United States (see, e.g., Hiebert et al. [1997] for a
look at three major relevant research programs).

Further, growing evidence suggests that once
students have memorized and practiced procedures
without understanding, they have difficulty learn-
ing to bring meaning to their work (Hiebert 1999).
Once students have a solid foundation in under-
standing the operations, they can be introduced to
some of the algorithms historically taught in the
United States, so that they become familiar with
these commonly used algorithms, understand
them, and can choose to use them. However, short-
cut notations that obscure place value, such as
those used in the traditional "carrying" algorithm,
must be introduced with great care so that students
do not lose the meaning of the problem as a whole
through rote manipulation of individual digits.

Decades of data show that students in the
United States can learn to compute simple prob-
lems successfully without gaining the understand-
ing that they need to solve more complex prob-
lems. (See Hiebert [1999] for a history of the
inadequacy of traditional mathematics instruction.)
Principles and Standards notes that students do
need procedures to solve problems, but procedures
alone are not enough: "Developing fluency
requires a balance and connection between con-
ceptual understanding and computational profi-
ciency. On the one hand, computational methods
that are over-practiced without understanding are
often forgotten or remembered incorrectly.... On
the other hand, understanding without fluency can
inhibit the problem-solving process" (NCTM
2000, p. 35).
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What Are the Main Messages of Principles and
Standards Regarding Computation"?
1. Computational fluency is an essential goal for school mathematics.

(See p. 152.)
2. The methods that a student uses to compute should be grounded in

understanding. (See pp. 152-55.)
3. Students should know the basic number combinations for addition and

subtraction by the end of grade 2 and those for multiplication and divi-
sion by the end of grade 4. (See pp. 32, 84, and 153.)

4. Students should be able to compute fluently with whole numbers by the
end of grade 5. (See pp. 35, 152, and 155.)

5. Students canl achieve computational fluency using a variety of methods
and should, in fact, be comfortable with more than one approach- (See
p. 155.)

6. Students should have opportunities to invent strategies for computing
using their knowledge of place value, properties of numbers, and the
operations. (See pp. 35 and 220.)

7. Students should inivestigate conventional algorithm-s for computing
with whole numbers. (See pp. 35 and 155.)

8. Students should be encouraged to use computational methods and tools
that-are appropriate for the context and purpose, including mental com-
putation, estimation, calculators, and paper and pencil. (See pp. 36,
145, and 154.)



The criteria of efficiency, accuracy, and flexibility
can help teachers carefully analyze students'
approaches to computation. On the one hand, we
do not expect students to be instantly accurate, effi-
cient, and flexible when they are learning about
operations. For example, students gradually
develop fluency in addition and subtraction as they
encounter these operations in first and second
grades; they extend this understanding to work
with larger numbers in grades 3 and 4. On the other
hand, we cannot simply accept any student
method. Rather, we need to analyze what a stu-
dent's procedure reveals about underlying under-
standing so that we can plan the next steps in
instruction. Let us look at some examples of stu-
dents in a fifth-grade classroom working on the
division problem 159 . 13 (adapted from video-
taped examples in Russell et al. [1999]):

Cara thought about the problem as "How many
13s are in 159?" She knew that ten 13s are 130,
that she then had 29 remaining in the dividend,
and that she could take two 13s out of 29, giv-
ing her an answer of 12 with a remainder of 3.

Armand counted by 13s until he reached 52. He
then added 52s until he got as close to 159 as
possible (52 + 52 + 52 = 156). He knew that
each of the 52s contained four 13s, so he had
twelve 13s, with a remainder of 3.

Malaika subtracted 13s from' 159 until she could
not subtract any more. She explained, "I kept
taking away. I made a mistake, but I checked
and fixed it, and I kept taking away. I counted
how many I took away. It was 12, and I had a
remainder 3 because I couldn't take away any
more 13s."

What do these three methods reveal about the
computational fluency of these three students?
Each of the students knows something about what
division is and its relationship to other operations:
Cara uses multiplication, Armand uses addition,
and Malaika uses subtraction correctly to solve the
division problem. Cara and Armand display greater
knowledge of the properties of division; each of
them is able to break the original problem into
parts, then to put the parts in correct relationship to
one another. The distributive property seems to
underlie both their solutions. Cara's solution sug-
gests thinking of the problem as (130 - 13) + (29 -
13), whereas Armand's solution suggests splitting
up the problem differently, as (52 - 13) + (52 .
13) + (52 - 13) + (3 -. 13).

However, these students have very different

Join 3,000 of your colleagues for three days of innovative professional
development at more than 350 sessions - developed and presented

by experienced, practicing educators - to provide a better
understanding of educational technology and its use in the classroom.

This popular event for (-12 and college educators will enhance
teaching skills and enrich the mathematics and science

curricula for your students.

T'-Teachers Teaching with Technology'

13th Annual International Conference
March 16-18, 2001 * Hyatt Regency Columbus

Columbus Convention Center
@© 2000 Ti T30001/b TM Trademark, Teachers Teaching With Technology

NOVEMBER 2000

Calculators for the Classroom
We stock calculators from the basic to math labs,

plus overhead systems, batteries, workbooks, etc.
Call us for information or quotations!

1-800-526-9060
1- 888-526-9060 - West

X EDUCATIONAL ELECTRONICS
70 Finnell Drive West: 4289 Barbara Way N.E.

Weymouth, MA 02188 Salem. OR 97305
Fax: 781-340-6742 Fax: 503-304-1114

..-



needs. Cara is identifying a large, easily solvable
subproblem (130 10), using her knowledge of the
structure of the number system to choose it. She
needs to pursue and, eventually, consolidate this
approach so that she can use it efficiently and con-
sistently. She may also need help generalizing this
approach to larger numbers. Does she know the
effect of multiplying by 20? For example, if she
was dividing 400 by 18, would she know that 20 x
18 = 360?

Armand is also beginning to take apart the prob-
lem into manageable subproblems, but he seems to
rely on counting by the divisor to find these sub-
problems. In this problem, he happened to
encounter a convenient number, 52, that was easy
to combine. What if he had not found a convenient
number so easily? Armand needs work on using
the structure of the base-ten system to help him.
Does he know the effect of multiplying by 10?

Malaika, as a fifth grader, should cause a teacher
great concem. Although she does have some under-
standing about the operation of division, subtracting
13s is an inefficient way to solve this problem.
What does she know about the relationship between
multiplication and division? What does she know
about multiplying by 10? These are areas in which
she needs considerable work.

Some questions to consider as you assess
students' computational fluency include the
following:

* Does the student know and draw on basic facts
and other number relationships?

* Does the student use and understand the struc-
ture of the base-ten number system-for exam-
ple, does the student know the result of adding
100 to 2340 or of multiplying 40 x 500?

* Does the student recognize related problems
that can help with the problem?

* Does the student use relationships among
operations?

* Does the student know what each number in the
problem and subproblems means, including the
place value represented by each numeral used?

* Can the student explain why the steps that he or
she uses work?

* Does the student have a clear way to record and
keep track of his or her procedure?

* Does the student have a few approaches for each
operation so that he or she can select a proce-
dure for the problem?
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Teaching for both skill and understanding is cru-
cial-these competences are learned together, not

separately. Teaching in a way that helps students
develop both mathematical understanding and
efficient procedures is complex. Teachers must
understand the basic mathematical ideas that
underlie computational fluency, use tasks in
which students develop these ideas, and recog-
nize opportunities in students' work to focus on
these ideas. Many of us learned mathematics as a
set of disconnected rules, facts, and procedures.
As mathematics teachers, we then find it difficult
to recognize the important mathematical princi-
ples and relationships underlying the mathemati-
cal work of our students.

Professional development structures and
materials need to provide long-term work in
which teachers immerse themselves in both
examining mathematical content and learning
about children's mathematical thinking through
intensive institutes or regular, ongoing school-
year seminars. Attaining computational fluency
is an essential part of students' elementary math-
ematics education. This fluency involves much
more than learning a skill; it is an integral part of
learning with depth and rigor about numbers and
operations.
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